Abstract
Greenhouse gas (GHG) emissions are known to contribute to global climate change. A two-year field study on Kentucky bluegrass (Poa pratensis L.) evaluated cultivation practices and fertilizer use on GHGs. The presence of urea and hollow-tine aerification resulted in the highest soil carbon dioxide (CO2) emissions. No significant differences between soil methane (CH4) flux were observed based on fertilizer; however, in 2014 the verticutting cultivation treatment fluxed significantly more soil CH4 than the uncultivated control. Results showed no significant differences in soil nitrous oxide (N2O) in 2013; however, in 2014, both fertilizer and cultivation practices showed significant differences between treatments, with the urea and the hollow-tine treatments fluxing significantly more soil N2O. The hollow-tined plots produced the greenest turf in 2013, followed by the uncultivated control and the verticutted treatment. In 2014, both the hollow-tine and the uncultivated control produced the greenest turf, followed by the verticutted treatment. The hollow-tined and uncultivated control treatments had significantly higher turfgrass quality than the verticutted treatment. The verticutted urea treatment was above acceptable levels (>6.0) for turfgrass quality following all cultivation events. The results show cultivation practices can be identified that reduce GHG emissions while maintaining turfgrass quality and color.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.