Abstract

The effects of Cu alloying on the microstructure and mechanical properties of Zn-25Sn-xCu (x = 0–1.0 wt%) high temperature Pb-free solders were investigated in the present study. The 1 wt% Cu alloying enhanced the ultimate tensile strength and the micro-hardness of the primary η-Zn phase by 23.1% and 144.0% increments, respectively. These mechanical property variations were attributed to the combined effects of grain refining strengthening of the primary η-Zn phases, precipitation strengthening of the fine ε-CuZn5 compounds in the η-Zn matrix (Cu content greater than 0.3 wt%), and solid-solution strengthening of the Cu inclusion in the η-Zn matrix. The granular two-phase (η-Zn + ε-CuZn5) microstructure, composed of refined η-Zn matrix and fine ε-CuZn5 precipitations, contributed to superior mechanical strength of the Zn-25Sn-xCu high temperature Pb-free solders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.