Abstract

TiO2–SiO2 composite films were produced on commercially pure titanium (CP-Ti) substrate by a sol–gel method to investigate the behavior of sol aging time and its potential effects on the structural and electrochemical properties of composite coatings. Anatase-TiO2 and quartz-SiO2 peaks were observed on all composite coated samples according to XRD results. It was observed that the average grain size increased with sol aging time. Also, the average smallest grain size was seen at composite coatings prepared from unaged sol according to the width of the peaks. Electrochemical behavior of coated samples was mainly investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) in Simulated Body Fluid (SBF) solution. In corrosion tests, the composite coatings showed better anti-corrosion behavior than that of uncoated samples. In addition, the corrosion properties of the composite films were considerably affected by sol aging time. Corrosion resistance of coatings decreased with increasing aging time and the best result was obtained from composite coatings prepared from unaged sol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.