Abstract
A capacitively-coupled RF argon discharge at a pressure of 10 mTorr with a plate separation of 7.5 cm has been studied both experimentally and using a one-dimensional particle in cell simulation with Monte Carlo collisions. A magnetic field of 0 to 60 G is applied in the direction parallel to the capacitor plates. In the simulation it was found that as the magnetic field was increased such that the electron cyclotron orbit radius of the hot electrons became smaller than of the order of the discharge length, the electron heating in the bulk of the discharge increased. The dominant electron heating mechanism was observed to change from a stochastic sheath to a bulk ohmic electron heating mode, with a variation of field from a to 10 G. This was accompanied by a drop in the plasma density at small magnetic fields, which was also observed experimentally. At higher magnetic fields the plasma density was found to increase, A detailed discussion of the simulation results is presented drawing comparisons with the experimental results, with which there is good agreement, and a simple magnetohydrodynamic model for the bulk heating. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.