Abstract

Averaged grating-evoked cortical potentials were recorded from area 17 of awake cats. Peak latency of early components of the visual-evoked potential (VEP) response to stimulus onset increased as a function of spatial frequency, while amplitude tended to be largest at intermediate spatial frequencies. Latency increased and amplitude generally decreased to lower spatial-frequency stimuli (less than 0.25 cycle/deg) in the presence of a uniform flickering field (UFF). The UFF had a relatively small or opposite effect on peak latency and amplitude for higher spatial-frequency stimuli (greater than 0.50 cycle/deg). The VEP response to stimulus offset was present only at low spatial frequencies and was virtually eliminated by the presence of the UFF. The effects were similar whether the target and UFF background were simultaneously presented or briefly separated; however, the UFF had no effect when the two were spatially separated. The effects of the UFF background on VEP onset response increased with increasing temporal frequency from 2-8 Hz; offset responses were affected similarly at all temporal frequencies. These effects are similar to those observed in humans and suggest that two spatio-temporally tuned mechanisms contribute to the early VEP response. In the cat, the mechanisms seem to correspond to X and Y cells in the dorsal lateral geniculate nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.