Abstract
We previously found that treatment of both donor cells and early cloned embryos with combination of 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A (TSA) significantly improve the in vitro and full-term development of nuclear transfer (NT) bovine embryos. To investigate how this treatment improved the epigenetic reprogramming of somatic cell nuclei, we compared the expression levels of DNA methylation-, chromatin structure-, and development-related genes in in vitro fertilized (IVF group), NT (C-NT group), and 5-aza-dC and TSA-treated NT (T-NT group) single blastocyst using quantitative real-time PCR. We also compared the DNA methylation status of satellite I among three groups using bisulfite sequencing analysis and combined bisulfite restriction analysis (COBRA). There were significantly lower levels of DNMT1, DNMT3b, HDAC2, and IGF2 transcripts in T-NT blastocysts than in C-NT blastocysts, whereas the relative abundance of OCT4 and SOX2 mRNA was significantly increased in T-NT blastocysts compared to C-NT blastocysts. In addition, the treatment also reduced the DNA methylation levels of NT blastocysts on satellite I sequence. It is likely that TSA may act synergistically with 5-aza-dC to exert such modifications in gene expression and DNA methylation, subsequently enhancing developmental potential (in vitro and full-term) of treated cloned embryos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.