Abstract

The use of supported ionic liquid membranes and solvents that possess good selectivity on capturing carbon dioxide from flue gases would have a potential to replace conventional absorption method. However, common good solvents for carbon dioxide capture will undergo degradation due to the presence of oxygen. In this work, the effect of binary mixtures of [emim] [NTf2] ionic liquid: acetone at different composition on the morphology of the supported ionic liquid membranes (SILMs) was investigated using field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) analysis. To test the stability of the SILMs, membranes were submerged in a pure and aqueous solution of monoethanolamine (MEA) at 70 °C for 14 days. The maximum amount of ionic liquid immobilized within the particular membranes was acquired at [emim] [NTf2] IL: acetone; (80:20) composition and found to be homogeneously distributed. Based on the study, the SILMs were found to be more stable with 2 M MEA as its surrounding phase. These remarks were in agreement with the ionic liquid losses, as ascertained by mass balance. Results in this work ultimately suggest promising potentials of [emim] [NTf2]-SILMs for further evaluation work, especially for the prevention of oxidative degradation of the amine solvents in membrane contactor applications for CO2 capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.