Abstract

ABSTRACT The influence of solutions of NaCl on the hatching of eggs of Trichostrongylus retortaeformis is studied. It is shown that the effects are not the consequence of colligative properties, but are related to ionic phenomena. 0·05 N-NaCl slows down the rate of hatch without impairing the ultimate ‘hatchability’of the eggs. Processes of development up to hatching are not slowed down. The effect demonstrated in the case of NaCl is shown to be shared by eight other electrolytes, the depression in the rate of hatch being proportional to the mobility of the ions in solution. On the assumption that the effect of the ions is due to a penetration of the egg membrane(s) the rate of entry is shown to be controlled by the speed of the slower ion in any one salt. The influence of NaCl on the permeability of hatching eggs to water is studied. It is shown that the rate of increase in permeability is slowed down sufficiently in NaCl to control the rate of hatch. The inference that water permeability is a necessary prerequisite for hatching is made, a further hypothetical process being invoked to account for the rate of hatch in the absence of NaCl, since it is not then controlled by changes in water permeability. The probability that the net effect of ionic solutions on the eggs is one concerned with the rate of breakdown of the inner wax-like layer of the egg is strengthened by experiments demonstrating that the depressing influence of NaCl is antagonized by ‘Teepol’, though the comparable influence of other, non-emulsifying, compounds cannot be explained. The role of water permeability in the hatching mechanism is investigated. A hatching mechanism of strongyloid eggs is proposed which involves two processes, the first dependent upon the osmotic relationships of the unhatched larva to its environment, the second being some sort of chemical weakening of the outer shell. It is suggested that the effect of ions on hatching rate assists the ‘embryonated egg’ to survive under natural conditions when the hatched first-stage larva might otherwise be destroyed by desiccation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.