Abstract
In 1969 H. and D. Stoyan showed that the stationary waiting-time distribution in a GI/G/1 queue increases in the ordering determined by the expected value of all non-decreasing convex functions when the interarrival-time and service-time distributions become more variable, as expressed in the ordering determined by the expected value of all convex functions. Ross (1978) and Wolff (1977) showed by counterexample that this conclusion does not extend to all GI/G/s queues. Here it is shown that this conclusion does hold for all GI/G/s queues for several other measures of congestion which coincide with the waiting time in single-server systems. One such alternate measure of congestion is the clearing time, the time required after the arrival epoch of the nth customer for the system to serve all customers in the system at that time, excluding the nth customer. The stochastic comparisons also imply an ordering for the expected waiting times in M/G/s queues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.