Abstract

Ferritin is a multimeric protein consisting of heavy and light chains assembled in different tissue-specific ratios, which can protect cells from oxidative stress by storing reactive iron (Fe). Because the lens is constantly exposed to UV irradiation, we studied its effects on ferritin synthesis and Fe metabolism in cultured lens epithelial cells with and without ascorbic acid (Asc). UVB caused a large increase in accumulation of newly synthesized ferritin chains; this increase was additive to that induced by Asc. In contrast to the Asc-induced increase in Fe storage, Fe storage in ferritin was unaltered by UVB. Although UVB increased accumulation of newly synthesized ferritin chains, total ferritin levels were unaltered. In contrast, Asc, which induced a quantitatively similar increase in accumulation of newly synthesized ferritin chains, doubled the total amount of ferritin. Because UVB did not change Fe storage in ferritin or the size of the labile Fe pool, it was hypothesized and then determined that these newly synthesized chains did not assemble into functional holoferritin. Numerous studies detail the effects of various treatments on de novo ferritin synthesis; however, this study provides a cautionary note regarding the conclusions of such studies in the absence of data indicating assembly of functional ferritin molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.