Abstract
This study investigates the influence of ultraviolet (UV) radiation on the mechanical properties of Fused Deposition Modeling (FDM) 3D printed materials, specifically polycarbonate (PC) and polylactic acid (PLA) specimens. The research involves conducting experiments on five test specimens of each material exposed to UV radiation and comparing their mechanical properties to those of five control specimens that remain unexposed. The results reveal a significant mean difference between the mechanical properties of the control and UV-exposed materials. UV radiation caused a decrease in tensile strength for the PC material, while the PLA material exhibited an increase in tensile strength. The impact of UV radiation on PLA was more substantial compared to PC. Flexural strength testing showed an enhancement in strength for the UV-treated materials, with UV treatment having a greater influence on the flexural strength of PLA compared to PC. The mechanical properties of PLA were more significantly impacted by UV radiation than those of PC. The study findings suggest that PC and PLA materials exhibit different responses to UV exposure, which may have implications for their practical applications. Further research is needed to fully understand the underlying mechanisms governing these divergent responses and to optimize the performance of each material under UV radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.