Abstract

Ultraviolet (UV) irradiation in biomaterial synthesis is commonly used to do sterilization and increase physical characteristics. This study had a goal to evaluate the characteristics of polyvinyl alcohol-Aloe vera (PVA-AV) nanofibers from the electrospinning process that was exposed by UV with the power of 8, 10, 15, and 20 W for 6 h. The physical properties of the fiber were characterized by using Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) test, and water absorption test. The SEM images showed that the nanofibers were formed with s homogeneous structure and no beads. The diameter and the thickness of the nanofibers increased with the increase of the power of UV exposure to the sample. The biggest diameter was 319.60 ± 56.17 nm at UV exposure power of 20 W. The FTIR test result indicated that there was no new chemical bond after the PVA-AV was exposed by UV. DSC test result showed that the increase of power could increase the melting temperature (Tm) with the highest value of 189.51°C at UV exposure power of 20 W. The water absorption test showed that the highest water absorption was 739.6 % at UV exposure power of 20 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.