Abstract

Cavitation intensity is affected by ultrasonic intensity (UI) and is a key parameter to describe experimental results during ultrasonic treatment. The relationship between the UI and physicochemical properties of Chinese fir was investigated. In this study, four frequencies (25, 28, 40, and 59kHz) were used at the same intensity of 240W and the same duration of 35min. The UI during the ultrasonic treatment was determined, and the chemical components were determined. The chemical structure, crystallinity, morphology, and extractives of wood were respectively analyzed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS). The results showed that higher crystallinity was associated with a larger integrated area under the curve of the ultrasonic intensity (UIA). The largest UIA was observed at 25kHz, followed by those at 40, 59, and 28kHz. The relative content of hemicellulose was strongly affected by the ultrasonic treatment. No chemical reactions were observed in the wood, whereas the ultrasonic treatment affected the torus of the bordered pits and facilitated the migration of extractives. In general, the higher the UIA, the stronger the effect of the cavitation was. The most significant changes in the physicochemical properties were observed at 25kHz. The instantaneous ultrasonic intensity (IUI) changed over time, and the UIA was closely associated with changes in the physicochemical properties of the wood. The results of this study demonstrate that UI has a significant influence on the physicochemical properties of wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.