Abstract

Trichophyton mentagrophytes and Trichophyton rubrum, are two of the frequently identified dermatophyte species in routine microbiology laboratories. Although newer technologies may assist in species-level identification, direct application of these methods usually require improvement in order to obtain reliable identification of these species. Earlier data have shown that dermatophytes may be identified with FT-IR spectroscopy although there are some limitations. In particular, the organic bond ranges in FT-IR spectra showed more irregularity because of the eucaryotic complexity of the molds. In this study, Tween-80 which is an inorganic molecule, was added to the dermatophyte growth medium in order to investigate its effect on FT-IR spectroscopy analysis of dermatophytes. Nine reference dermatophyte strains [5 T.mentagrophytes complex (T.asteroides CBS 424.63, T.erinacei CBS 344.79, CBS 511.73, CBS 677.86, T.mentagrophytes CBS 110.65) and 4 T.rubrum complex strains with different morphotypes (T.fluviomuniense CBS 592.68, T.kuryangei CBS 422.67, T.raubitschekii CBS 102856, T.rubrum CBS 392.58)] were included in the study. All strains were cultured on Sabouraud glucose agar either with or without 1% Tween-80 for three weeks. After the incubation period, superficial scrapings from each dermatophyte colony were analyzed using FT-IR spectroscopy. All measurements were performed in transmission mode between 4400 and 400 cm-1. Numerous spectral window data were analyzed by principal component analysis and hierarchical clustering was performed. The second derivations of spectral ranges revealed clear grouping of T.mentagrophytes complex and T.rubrum complex in association over five separate spectral ranges. The findings also showed that while all of the T.mentagrophytes strains contained lipid compounds in their mold structure after Tween-80 incubation (p< 0.025), T.rubrum strains did not. Based on these results, it was concluded that culture medium containing Tween-80 was sufficient to enable differentiation of T.mentagrophytes complex from T.rubrum complex by FT-IR spectroscopy. This effect might be attributed to the possible transfer of lipid compounds from culture to cell structure during growth. Further studies with the use of large number of reference strains and clinical isolates exposed to different environmental factors, such as antifungal agents and inorganic ions, are needed to support these data indicating favorable effect of Tween-80 on the differentiation of T.mentagrophytes and T.rubrum complexes by FT-IR spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.