Abstract

The effect of trapped electrons featuring vortex-like distribution on the nonlinear behavior of a three-dimensional ion-acoustic shock wave is investigated in a magnetized ionic-pair plasma. In the long-wave approximation, the dynamics of the shock wave is governed by the -dimensional Schamel-Zakharov-Kuznetsov-Burgers' equation due to the presence of trapped electrons and ion kinematic viscosity. By using the homogeneous balance principle and tanh function method, we obtain a novel exact shock wave solution of the equation. It is found for the first time that the trapped electrons can support a shock wave with only positive polarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.