Abstract
The Zr803d20 (3d = Co, Ni) metallic glasses and the partially crystalline Zr76Ni24 metallic glass were prepared by melt spinning. The effect of thermal relaxation on the short-range order in melt-quenched the Zr803d20 (3d = Co, Ni) metallic glasses and the partially crystalline Zr76Ni24 metallic glass during heat treatment at different heating rates has been investigated by means of the differential scanning calorimeter (DSC) and the X-ray powder diffraction (XRD) measurements in temperature interval from 300 K to 823 K. According to the XRD results, for the partially crystalline Zr76Ni24 metallic glass, melt-quenched alloy consists of a fraction of metastable Zr3Ni crystalline phase and an amorphous phase. The estimated volume of the fraction of the Zr3Ni crystalline phase was ≈ 9.6%. The crystalline peaks of the Zr3Ni crystalline phase were fitted to the orthorhombic structure type. The Zr3Ni crystallite size was estimated using the Sherrer formula to be from 15 nm to 30 nm. Crystallization studies have shown that the existence of the orthorhombic Zr3Ni crystalline phase does not change the thermal stability of the amorphous phase against further crystallization and remains unchanged during the annealing of the samples up to 823 K. On the basis of the DSC and XRD obtained data it was possible to identify the phases which occur in the heat treatment of the Zr803d20 (3d = Co, Ni) metallic glasses and of the partially crystalline Zr76Ni24 metallic glass up to 823 K. The average crystallite sizes of these nanocrystalline phases were from 10 nm to 24 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.