Abstract

The effect of temperature-dependent viscosity on free convective flow past a vertical porous plate is studied in the presence of a magnetic field, thermal radiation, and a first-order homogeneous chemical reaction. Boundary layer equations are derived and the resulting approximate nonlinear ordinary differential equations are solved numerically by the shooting method. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity and temperature profiles as well as the skin-friction parameter and the Nusselt and Sherwood numbers is illustrated graphically to show typical trends of the solutions. The dynamic viscosity in this study is taken as a function of the temperature although the Prandtl number is considered constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.