Abstract

The migration rate of small molecules through the structure of proteins can be monitored by quenching the light emitted from an excited optical probe located within the protein. In the present study we examined the influence of the solvent viscosity on the migration rate of the quencher anthraquinone sulfonate through myoglobin towards an excited Zn protoporphyrin molecule at the binding site of the protein. The solvent viscosity was increased by adding dextrans of different molecular weight but forming isoviscous solutions. The results demonstrate that the migration rate in the protein decreases with increasing solvent viscosity. This suggests that the fluctuations on the protein structure, which make the above migration possible, are affected by the solvent macroviscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.