Abstract

Propagation of influenza A(H3N2) viruses in MDCK cells has been associated with the emergence of neuraminidase (NA) variants carrying a change at residue 151. In this study, the pyrosequencing assay revealed that ∼90% of A(H3N2) virus isolates analyzed (n=150) contained more than one amino acid variant (D/G/N) at position 151. Susceptibilities of the virus isolates to zanamivir and oseltamivir were assessed using the chemiluminescent and fluorescent NA inhibition (NI) assays. In the chemiluminescent assay, which utilizes NA-Star® substrate, up to 13-fold increase in zanamivir-IC50 was detected for isolates containing a high proportion (>50%) of the G151 NA variant. However, an increase in zanamivir-IC50s was not seen in the fluorescent assay, which uses MUNANA as substrate. To investigate this discrepancy, recombinant NAs (rNAs) were prepared and tested in both NI assays. Regardless of the assay used, the zanamivir-IC50 for the rNA G151 was much greater (>1500-fold) than that for rNA D151 wild-type. However, zanamivir resistance conferred by the G151 substitution was masked in preparations containing the D151 NA which had much greater activity, especially against MUNANA. In conclusion, the presence of NA D151G variants in cell culture-grown viruses interferes with drug susceptibility assessment and therefore measures need to be implemented to prevent their emergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.