Abstract
A series of direct simple shear (DSS) tests were carried out on a non-plastic sandy silt lead−zinc−silver tailings to develop a relationship between undrained shearing behaviour and density for contractive states. The critical state line was also obtained through triaxial compression tests to enable the DSS tests to be viewed in a critical state framework and allow comparison with in situ testing. It was found that the gravimetric water content (GWC) used to tamp the specimens had a significant effect on the resulting undrained strengths when attempting to achieve dense states — with higher GWC giving lower strength at a given density than a lower GWC. Intact and slurry deposited (SD) samples were also tested to access denser states without inducing tamping-related stresses. These showed a more consistent trend with the loose-tamped specimens, and with other data from the literature. Plausible explanations as to the causes of the increased strength of dense-tamped samples were obtained through estimating potential preconsolidation stresses and “locked in” horizontal stresses that may occur from dense tamping. The importance of these observations on the development of density−strength profiles in engineering practice was outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.