Abstract

The article reports the synthesis and characterisation of two new magnetite (Fe3O4)-supported zinc oxide (ZnO) photocatalysts, produced in the presence of Fe3O4 nanotemplates that were bound with tetramethylammonium (TMAH) and citric acid (CA) respectively. The TMAH-bound hybrid nanoparticles, Fe3O4(TMAH)–ZnO, have demonstrated a high recoverability (86%) and phenol degradation rate constant of 0.0170min−1, which is much greater than that of the CA-bound photocatalyst (0.0085min−1) and the pure form of ZnO (0.0039min−1). Further investigation demonstrates that the presence of various surfactants on the surface of the magnetite nano-templates significantly affects the size, the surface and the optical properties of the produced hybrid nanophotocatalysts, and subsequently their photocatalytic activities. The pH values of the photocatalysis environment also show strong influences to the photocatalytic properties and the dissolution of the nanoparticles. An optimal operation condition for the Fe3O4(TMAH)–ZnO is when the photocatalysis is carried out at a pH=4–5.6, and the concentrations of the photocatalyst and phenol are 325 and 20mgL−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.