Abstract

Various physical and chemical surface parameters, e.g., surface roughness and surface chemistry, contribute to anti-soiling (AS) properties. Nevertheless, the effect of surface chemistry has not been distinctly elucidated yet. In this study, a set of mechanically stable and durable hydrophobic AS coatings with controlled surface chemistry were synthesized, while surface roughness was kept below 1 nm. Fluoroalkylsilane (FAS), alkylsilane (AL), and tetraethyl orthosilicate (TEOS) were employed for synthesis. Surface chemistry and surface roughness were quantified by XPS and AFM. A soiling lab simulator was designed to accelerate the soiling process. AS properties were quantified by UV–vis spectroscopy and optical microscopy. The surface free energy of coatings was estimated through (polar and apolar liquids) contact angle measurements (ranging from 16 to 30 mN/m), and a clear correlation was discovered between the AS properties and surface free energy. Moreover, mechanical properties and weathering resistance of the coatings were analyzed by nano-indentation and QUV accelerated weathering tester. While all coatings showed acceptable AS properties (transmission loss after dust deposition between 1/5 and 2/5 of uncoated glass) and excellent mechanical strength (above 27 GPa modulus and 2 GPa hardness), FAS-based coatings showed a significantly higher durability against weathering as compared to the AL-based ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.