Abstract
Hot dry rock is a clean, renewable resource of geothermal energy with good stability and a high utilization rate. Supercritical CO2 has shown promising results for improving the permeability and heat exchange of hot dry rock. In order to demonstrate the effect of supercritical CO2 on the failure mechanism of granite, the acoustic emission of granite during its failure process were studied in addition to X-ray diffraction, scanning electron microscopy, and optical electron microscopy investigations. The experimental results showed that for granite without supercritical CO2 treatment, as it approached failure, there were many acoustic emission events with a waiting time less than 0.0001 s, and that the power law exponent of the acoustic emission energy distribution decreased. The failure mechanisms were a combination of fracture and friction, with fracturing dominant. After immersion in supercritical CO2 , new cracks and pores appeared in the granite due to the dissolution of minerals, but friction was also a factor evidenced in particle crumbing. Generally, the acoustic emission statistical distributions of granite before and after supercritical CO2 soaking conformed to the seismic statistical distribution law. This study is conducive to increasing the understanding of artificial earthquakes induced by the development of hot dry rock. Cited as: Li, H., Jiang, X., Xu, Z., Bowden, S. The effect of supercritical CO2 on failure mechanisms of hot dry rock. Advances in Geo-Energy Research, 2022, 6(4): 324-333. https://doi.org/10.46690/ager.2022.04.07
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.