Abstract

ABSTRACTWe have modelled the microstructural evolution of polycrystalline thin films during grain growth under the situation in which grain boundary migration becomes impeded by solute drag. For this we use a two-dimensional simulation of capillarity-driven grain growth in which grain boundaries migrate at velocities proportional to local curvature. At high driving forces, corresponding to high curvatures, the boundaries are given a mobility corresponding to drag-free motion. At low driving forces, corresponding to curvatures less than some critical value, the boundaries are given a lower mobility which models the effect of solute drag. During grain growth the average curvature of boundary segments decreases. When the boundary curvatures begin to fall below the critical curvature, the grain size distribution evolves to a lognormal distribution, which is maintained as significant further grain growth occurs. This is in accordance with many experimental grain size distributions which are commonly observed to be lognormal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.