Abstract

Lutetium oxyorthosilicate (Lu2SiO5, LSO) doped with Pr3+ was synthesized on cleaned silicon (111) substrates by sol-gel route with the spin-coating technique. XRD patterns indicated that the films were crystallized into A-type LSO phase at 1000 °C, followed by a phase transition to B-type LSO occurred at 1100 °C. SEM observations revealed that the surface of the films was smooth, homogeneous and crack-free. When the sintering temperature was 1000 °C, the average grain size of the crystal particles was 100-200 nm and the thickness of the thin film was about 380 nm when the coating layer number up to 10. While the sintering temperature was 1100 °C, the average grain size of the crystal particles was 200-300 nm and the thickness of the thin film was about 320 nm also 10 layers. PL spectra showed when under 1000 °C, the quenching concentration of Pr3+ was 0.3 mol%, the characteristic emission peaks was 289 nm and 340 nm and the dominant decay time was 4.64 ns; while under 1100 °C, the quenching concentration of Pr3+ was 0.4 mol%, the characteristic emission peaks was 280 nm and 320 nm and the dominant decay time was 2.61 ns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.