Abstract

Meteorite and asteroid impacts into planet Earth seem rare but over the lifetime of our planet have been relatively frequent. Such collisions (involving very large impactors) have been blamed for mass extinctions during Earth’s history. It has also been postulated that impactors could carry life with them throughout the universe and seed our planet. This is the basis of the theory of panspermia (‘life everywhere’) and suggests that life could be spread throughout the universe by ‘piggy-backing’ on inter-planetary bodies, e.g. asteroids, which then collide with other planets, thus seeding them with life. The shock behaviour of organic matter has an important role to play in helping to inform the feasibility of such theories. An example of a model carrier for life in seeding mechanisms is the plant seed. Here we present the development of an experimental technique in which plant seed samples are shock-loaded and their viability subsequently assessed post-shock. This technique was tested on Lepidium sativum (cress) seed samples. Experimentally, shocked seeds showed positive viability in all tests performed until shocked with a maximum peak shock pressure of ca. 0.8GPa. These results suggest it is unlikely that the plant seeds tested would be able to survive the extreme conditions on an asteroid during impact, but may be able to survive shock waves that would be generated from such collisions when existing on a planetary body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.