Abstract

The objective of this study was to assess the application of Response Surface Methodology in defining the effect of self-assembly condition on the average diameter of polymeric micelles. Di- and tri-block copolymers of poly(ethylene oxide)-b-poly(α-benzylcarboxylate-ε-caprolactone) (PEO-PBCL) and PBCL-b-poly(ethylene glycol)-b-PBCL (PBCL–PEG–PBCL) were synthesized through ring opening polymerization of α-benzyl-ɛ-carboxylate using MePEO or dihydroxy PEG as initiator, respectively. Polymeric micelles were formed through solubilization of block copolymers in acetone followed by drop-wise addition of this solution to water. Polymer concentration was changed and the intensity mean diameter of self-assembled structures was measured by dynamic light scattering. The experimental data were fitted to a mathematical model. The experimental conditions leading to the production of micelles of certain size (30, 60 or 90 nm for tri-block and 30 nm for di-block copolymers) was predicted. A good match between predicted and experimental data was observed. The results showed it would be possible to obtain micelles of certain size using block copolymers of different molecular weights or obtain micelles of different size at a given block copolymer molecular weight, by manipulating the polymer concentration. These observations show reproducible micelles of defined average diameter can be prepared by co-solvent evaporation by controlling the used polymer concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.