Abstract

RUA field is classified into heavy oil reservoir type due to the high viscosity value and low API degree . This causes the RUA field can not be produced conventionally. the solution of this problem is to apply steam or thermal injection into reservoir which could reduce the viscosity of the heavy oil (Bera Babadagli, 2015). One of the best EOR methods that has been proven to overcome this issue is using CSS method (Suranto et al., 2020). During the production period, the CSS process can affect the viscosity of the oil by increasing the temperature of the oil in the reservoir. In one production well, cyclic work are applied periodically, its called repeated cyclic (J. J. Sheng, 2013). This is because time of reservoir temperature stays above the baseline temperature reservoir shortly. Even though the cyclic already done repeatedly, there is still a decrease of oil production, different peak reservoir temperatures, and found the possibility of pump damage after the cycle job which led to the need for analysis on these issues. The analysis was performed by looking at the historical production data, historical reservoir temperature data, and production pump work data in the RUA field. After a production history data that reprsentative analyzed, it was found that teh production after cyclic there is increasing, and there is also a decline from the previous cyclic production. Based on the results of the production analysis, it was found that 53.24% of the production wells in the RUA field were already in the ramp down stage and 46.75% were already in the ramp-up stage. Meanwhile, the average HET for regular cyclic jobs is 3-4 months and 5-6 months for long cyclic jobs. And from the pump work data, only 3 wells were damaged. This suggests that cyclic stimulation is completely safe to be performed in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.