Abstract

The main objective of the study is to explore the removal characteristics of Cu2+ and Zn2+ ions in activated carbon-based capacitive deionization (CDI). In this work, CDI experiments were performed to remove divalent ions (e.g., Cu2+, Zn2+, and Ca2+) from single- and multicomponent aqueous solutions. As evidenced, divalent heavy metals could be successfully removed by charging the CDI cell at 1.2 V. Notably, the preferential removal of Cu2+ ions over Zn2+ and Ca2+ ions was observed in the charging step. The removal capacities for Cu2+, Zn2+, and Ca2+ ions in a competitive environment were 29.6, 19.6, and 13.8 μmol/g, respectively. In contrast, the regeneration efficiencies for the removal of Cu2+ and Zn2+ were much lower than that of Ca2+, suggesting the occurrence of irreversible Faradaic reactions on the cathode. X-ray photoelectron spectroscopy analysis demonstrated that Cu2+ ions were reduced to Cu(I) and Zn2+ ions were transformed to ZnO/Zn(OH)2 on the cathode. Therefore, there were two major mechanisms for the removal of divalent heavy metal ions: capacitive electrosorption and cathodic electrodeposition. Specifically, the reduction potential played a crucial role in determining the removal characteristics. When regarding divalent cations with similar hydrated sizes, the divalent cation with a higher reduction potential tended to be separated by cathodic electrodeposition rather than double-layer charging, indicating the high removal selectivity of activated carbon-based CDI. This paper constitutes a significant contribution to promoting the application of CDI for contaminant sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.