Abstract

Phylogenetic studies based on DNA sequences typically ignore the potential occurrence of recombination, which may produce different alignment regions with different evolutionary histories. Traditional phylogenetic methods assume that a single history underlies the data. If recombination is present, can we expect the inferred phylogeny to represent any of the underlying evolutionary histories? We examined this question by applying traditional phylogenetic reconstruction methods to simulated recombinant sequence alignments. The effect of recombination on phylogeny estimation depended on the relatedness of the sequences involved in the recombinational event and on the extent of the different regions with different phylogenetic histories. Given the topologies examined here, when the recombinational event was ancient, or when recombination occurred between closely related taxa, one of the two phylogenies underlying the data was generally inferred. In this scenario, the evolutionary history corresponding to the majority of the positions in the alignment was generally recovered. Very different results were obtained when recombination occurred recently among divergent taxa. In this case, when the recombinational breakpoint divided the alignment in two regions of similar length, a phylogeny that was different from any of the true phylogenies underlying the data was inferred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.