Abstract

BackgroundThe shape of the dose-response curve at low doses differs from the linear quadratic model. The effect of a radio-adaptive response is the centre of many studies and well known inspite that the clinical applications are still rarely considered.MethodsWe studied the effect of a low-dose pre-irradiation (0.03 Gy – 0.1 Gy) alone or followed by a 2.0 Gy challenging dose 4 h later on the survival of the HT29 cell line (human colorectal cancer cells) and on the GM637 cell line (human fibroblasts).Results0.03 Gy given alone did not have a significant effect on both cell lines, the other low doses alone significantly reduced the cell survival. Applied 4 h before the 2.0 Gy fraction, 0.03 Gy led to a significant induced radioresistance in GM637 cells, but not in HT29 cells, and 0.05 Gy led to a significant hyperradiosensitivity in HT29 cells, but not in GM637 cells.ConclusionA pre-irradiation with 0.03 Gy can protect normal fibroblasts, but not colorectal cancer cells, from damage induced by an irradiation of 2.0 Gy and the application of 0.05 Gy prior to the 2.0 Gy fraction can enhance the cell killing of colorectal cancer cells while not additionally damaging normal fibroblasts. If these findings prove to be true in vivo as well this may optimize the balance between local tumour control and injury to normal tissue in modern radiotherapy.

Highlights

  • The shape of the dose-response curve at low doses differs from the linear quadratic model

  • A pre-irradiation with 0.03 Gy can protect normal fibroblasts, but not colorectal cancer cells, from damage induced by an irradiation of 2.0 Gy and the application of 0.05 Gy prior to the 2.0 Gy fraction can enhance the cell killing of colorectal cancer cells while not damaging normal fibroblasts

  • If these findings prove to be true in vivo as well this may optimize the balance between local tumour control and injury to normal tissue in modern radiotherapy

Read more

Summary

Introduction

The shape of the dose-response curve at low doses differs from the linear quadratic model. It is widely accepted that the shape of the dose-response curve at low doses differs from the linear quadratic model [1]. Hyperradiosensitivity or adaptive responses (i.e. a biopositive effect induced by a low priming dose and identified after application of a higher challenging dose) may occur at low doses of irradiation. The radio-adaptive response was first recognized 1984, when Olivieri et al demonstrated that human lymphocytes exposed to low concentrations of radioactive thymidine show fewer chromatid aberrations caused by a 1.5 Gy challenging dose than those not pre-exposed to irradiation [2]. A radio-adaptive response seems to be associated (page number not for citation purposes)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.