Abstract

AbstractDegradation of phosphoric acid doped polybenzimidazole membrane based fuel cells under accelerated potential cycling conditions is investigated in current study. Three unit cells with identical high temperature membrane electrode assembly were assembled with three different cathode flow field designs. The fuel cell is cycled between 0.5 V and 0.9 V with 3 min dwelling time for each voltage set point. Performance degradation mechanisms associated with differences in cathode flow design are identified. The fuel cell with multiple serpentine design is operated for a maximum of 4,821 potential cycles with only 38.6% of initial performance remaining at the end‐of‐test (EoT), whereas straight and parallel design operated for only 3,188 cycles. The electrochemical characterization studies reveal the cause of observed performance losses from polarization curves. Irrespective of the design type used there are very high activation losses observed which accelerated with accelerated stress tests (AST) testing. The impedance studies reveal high charge transfer resistance related to increased platinum crystal growth on cathode and reduced electrochemical surface area (ECSA) of catalyst. Overall the AST results in irreversible performance loss and severe degradation of the cathode catalyst support and catalyst itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.