Abstract

We investigated a class of one-dimensional (1D) Hamiltonian N-particle lattices whose binary interactions are quadratic and/or quartic in the potential. We also included on-site potential terms, frequently considered in connection with localization phenomena, in this class. Applying a sinusoidal perturbation at one end of the lattice and an absorbing boundary on the other, we studied the phenomenon of supratransmission and its dependence on two ranges of interactions, 0<α<∞ and 0<β<∞, as the effect of the on-site potential terms of the Hamiltonian varied. In previous works, we studied the critical amplitude As(α,Ω) at which supratransmission occurs, for one range parameter α, and showed that there was a sharp threshold above which energy was transmitted in the form of large-amplitude nonlinear modes, as long as the driving frequency Ω lay in the forbidden band-gap of the system. In the absence of on-site potentials, it is known that As(α,Ω) increases monotonically the longer the range of interactions is (i.e., as α⟶0). However, when on-site potential terms are taken into account, As(α,Ω) reaches a maximum at a low value of α that depends on Ω, below which supratransmission thresholds decrease sharply to lower values. In this work, we studied this phenomenon further, as the contribution of the on-site potential terms varied, and we explored in detail their effect on the supratransmission thresholds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.