Abstract
Using fluidic self-excited jets increases the rate of fluid mixing and reduces fuel consumption in industry burners (torches) and combustion chambers. The geometry of such jets is an important factor for fluidic jet determination. This study is concerned with investigating the types of fluidic nozzles configuration. The effect of nozzle configuration types was studied on various parameters such as frequency, velocity profile, velocity decay rate, the half angle of jet spread, and entrainment ratio. Maximum frequency and excited oscillation amplitude of fluidic jets were observed in the original geometry configuration. Also, the maximum spread rate and minimum velocity profile were observed in this geometry. Velocity decay rate shows its maximum magnitude in the original geometry configuration. Turbulence intensity reaches its maximum value in this geometry without any internal nozzle, whereas it shows the minimum value at geometry with an additional wall along the internal nozzle. The maximum increase in the half angle of jet spread was seen in the original geometry configuration. In this geometry, entrainment ratio is less than one, while in the geometry to create steady jets, entrainment ratio is more than one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.