Abstract

Based on the successful experience of synthesis of the TATB (1, 3, 5-triamino-2, 4, 6-trinitrobenzene) and cubane, we propose to consider their nitro derivatives combined by C–N bond as a series of high energy density compounds. First principles molecular orbital calculations have been used to investigate the structural and energetic properties, including the heat of formation, density, detonation performance, and impact sensitivity. Natural bond orbital analysis was carried out to investigate the influence of substituents on the electron delocalization. The results implied that the inclusion of nitro group will decrease the stability of cage skeleton and weaken the C–NO2 bond. The calculated heats of formation, density, detonation velocity, and detonation pressure are positive and large. The results revealed that two of five derivatives have the close performance and sensitivity to those of CL-20, indicating that they may be explored as new potential high energy materials. Leave them with the notable value to dig out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.