Abstract
AbstractRecommender systems are widely used in industry and are still active research areas in academia. For many businesses, they have become indispensable business tools. Producing accurate results for such systems is important for the operations of the businesses. For this reason, various algorithms and approaches have been developed for recommender systems to increase the prediction accuracy. Collaborative filtering is one of the most successful approaches. In collaborative filtering, in order to predict more accurately, it is recommended to determine user’s active neighbors. k-nearest neighbor (k-NN) algorithm is one of the most widely used neighbor selection algorithms. However, k-NN algorithm uses a fixed k value that reduces the accuracy of the prediction. In this paper, we present two novel approaches to increase the prediction accuracy of recommender systems; k%-nearest neighbor (k%-NN) algorithm to determine the appropriate k value for a user and a hybrid algorithm that combines a collaborative...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.