Abstract
The current investigation determined the microhardness of dentin tissue irradiated with erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) and neodymium-doped yttrium-aluminum garnet (Nd:YAG) lasers. Thirty non-carious human molars were used in this study. Dentin disks were prepared by horizontal sectioning of one third of the occlusal surface. Halves of dentin specimens were irradiated with 3.5- and 4.5-W Er,Cr:YSGG lasers and with a 2-W Nd:YAG laser. The remaining halves served as controls. The microhardness measurements were recorded with a Vickers surface microhardness tester. The results were statistically evaluated by paired t test and one-way ANOVA (p = 0.05). Laser irradiation has significantly reduced the microhardness of dentin within each group compared to its control. Moreover, statistically significant differences were observed among the different groups (p < 0.05). The 3.5-W Er,Cr:YSGG laser produced the greatest reduction in microhardness of dentin followed by 4.5 W and Nd:YAG laser. The differences between all the groups were statistically significant. It was concluded that both laser devices used in this study have resulted in significant thermal damage and subsequent reduction in dentin microhardness values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.