Abstract

AbstractThe aeroelastic modeling and flutter characteristics of a shear deformable wing/stores configuration under pull-up angular velocity is investigated. An isotropic non-uniform wing, which structural model incorporates flexibility in transverse shear and warping effects, is considered. The aeroelastic governing equations and boundary conditions are determined via Hamilton’s variational principle. In order to exactly consider the span wise location and properties of the attached stores the generalised function theory is used. The partial differential equations are transformed into a set of eigenvalue equations through the extended Galerkin’s approach. Numerical simulation highlighting the effects of the pull-up angular velocity and store parameters and configurations, such as mass ratio and their attachment locations, on the flutter speed are presented. The results of flutter analyses are validated with the published results and good agreement is observed. Furthermore, the procedure for an optimal deployment of stores is obtained for the case of the wing with four stores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.