Abstract

AbstractElectrode‐level fracture, or mud cracking, occurs during the drying process of Li‐ion electrodes and is known to be particularly prevalent in thick electrodes. Whilst these cracks are generally viewed as an obstruction to the production of thicker, more energy dense electrodes, cracks are similar in structure to directional pore channels which have been proposed as a means of improving ion transport to produce thicker electrodes more capable of performing at higher rates. However, existing literature has not thoroughly investigated the influence of cracking on the performance of electrodes. Here we analyse the 3D structure of thick cracked electrodes for the first time, using X‐ray computed tomography. We show that mud cracking enhances the performance of Li‐ion electrodes at discharge rates above 1 C and evaluate the implications on ion transport of different crack geometries by analysis of Euclidian distance maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.