Abstract

In this research, the influence of microstructure parameters on the residual stresses of ultrafine-grained sheets was investigated. For this purpose, the constrained groove pressing (CGP) process was carried out on the copper sheets with 3 mm thickness, and residual stresses of the CGPed sheets was measured using the contour method. Microstructure of the CGPed specimens was evaluated by the optical microscopy, micro x-ray diffraction (micro-XRD), and transmission electron microscopy (TEM) experiments. Microstructure parameters including crystallites size, dislocations density, and lattice strain were calculated using Williamson-Hall and Williamson-Smallman equations, and the calculated results were validated by the TEM images. The influence of these parameters on the residual stresses was investigated by analysis of variance (ANOVA) method, and two approaches were considered in this way. According to the results, the CGP process can create nanostructures in the CGPed sheets, and with increasing number of CGP passes, grains size, crystallites size, lattice strain, and residual stresses decrease, and density of dislocations increases. Microstructure parameters have a significant effect on the macro-residual stresses, and strain is the most effective parameter. Also, in the ultrafine-grained sheets, micro-parameters have an undeniable contribution, which is the same as that of macro-parameters on the macro-residual stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.