Abstract

Ten 56-d-old, 15-kg barrows were surgically fitted with a postvalvular T-cecum cannula at the ileo-cecal junction to evaluate the effect of microbial phytase on apparent and true ileal AA digestibility and N utilization. A semipurified cornstarch- and soybean meal-based diet was formulated to contain 3.4 Mcal of DE/kg, 17.0% CP, 0.8% Ca, and 0.6% P but had a low phytate-P concentration (0.13%; all on an as-fed basis). Chromic oxide and dysprosium chloride were used as indigestible markers. The basal diet was supplemented with 0 or 1,000 phytase units/kg of microbial phytase. Postprandial plasma urea N and alpha-amino N concentrations, excretion of Ca, P, and N in feces and urine, and ileal AA digestibilities were determined 3 times at 4-wk intervals beginning at 70 d of age. The homoarginine (HA) method was used to determine endogenous AA flow by replacing 50% of the basal protein with guanidinated protein. Microbial phytase had no effect on apparent ileal digestibility (AID) or on true ileal digestibilities of N and most AA but did increase AID for arginine (P = 0.006) and methionine (P = 0.037). However, in HA diets, phytase increased the AID of CP (P = 0.01) and several AA. Addition of microbial phytase had no effect on the postprandial alpha-amino N concentrations in plasma but increased overall plasma urea N concentrations (P = 0.035). Barrows fed phytase-supplemented diets had decreased P in feces (P = 0.003) and greater P in urine (P = 0.001) but comparable total P excretion compared with barrows fed no phytase-supplemented diets. In conclusion, the addition of phytase to a semi-purified soybean meal-based diet did not affect the AID of several AA. In addition, differences between the basal and HA diets in N digestibilities indicated that that guanidination may limit the use of the HA method in determining endogenous protein losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.