Abstract

Abstract MgTiO3 powder was directly added into molten steel at 1873K, and its effect on inclusion characteristics was studied by a scanning electron microscope and an energy dispersive spectrometer. Thermodynamic calculation indicates that MgTiO3 is unstable in molten steel and may decompose into [Ti], [O] and MgO. However, only Ti-bearing inclusions were observed in the treated sample, and Mg-bearing inclusions were absent. This can be explained by the features of wettability and stability for MgO. Compared with a Non-treated sample, both oxide and coarse MnS in treated sample were refined. For the oxide, this originates from the formation of Ti-bearing inclusion. For coarse MnS, this may be due to the fact that Ti can aggravate S segregation. Besides, this aggravation makes coarse MnS less globular. After etching, it was found that in the treated sample, Ti-bearing inclusion can induce the nucleation of intragranular acicular ferrites. This appearance was totally different from that of Non-treated sample, and indicates the effectiveness of external adding method in oxide metallurgy.

Highlights

  • MgTiO3 powder was directly added into molten steel at 1873K, and its effect on inclusion characteristics was studied by a scanning electron microscope and an energy dispersive spectrometer

  • MgTiO3 powder was directly added into molten steel, and its effect on inclusion characteristic has been explored

  • Compared with a Non-treated sample, coarse MnS in the External Adding Method (EAM)-treated sample became less globular and higher density. This may be interpreted by the fact that Ti can aggravate S segregation

Read more

Summary

Introduction

Abstract: MgTiO3 powder was directly added into molten steel at 1873K, and its effect on inclusion characteristics was studied by a scanning electron microscope and an energy dispersive spectrometer. Only Ti-bearing inclusions were observed in the treated sample, and Mg-bearing inclusions were absent This can be explained by the features of wettability and stability for MgO. Compared with a Non-treated sample, both oxide and coarse MnS in treated sample were refined. For the oxide, this originates from the formation of Ti-bearing inclusion. It was found that in the treated sample, Ti-bearing inclusion can induce the nucleation of intragranular acicular ferrites. This appearance was totally different from that of Non-treated sample, and indicates the effectiveness of external adding method in oxide metallurgy

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.