Abstract
Vibration extrusion (VE) is achieved by superimposing a mechanical vibration on the flowing melt during extrusion. The effect of melt vibration on the melt flow behavior of polystyrene (PS) was studied. The melt flow behavior during conventional extrusion (CE) was studied for comparison. With the application of the melt vibration technology, the melt flow behavior of PS was greatly improved. The melt viscosity during the VE strongly depends on the vibration frequency and vibration amplitude. Extruded at constant vibration amplitude, the melt viscosity decreases sharply with increasing vibration frequency and also does so for increasing vibration amplitude when extruded at a constant vibration frequency. The improved melt flow property is explained in terms of shear-thinning criteria. The effect of melt vibration on the melt flow behavior is also related to the melt temperature and extrusion pressure; the greatest decease in viscosity is obtained at low temperature and low extrusion pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.