Abstract

PurposeElectron-beam welding has been widely used in industry to join different titanium alloys (Ti-6Al-4V) components. During welding production defects, such as porosity, lack of penetration or thinning are often observed. High-cycle fatigue (HCF) tests have been performed on welded specimens to understand the effect of weld defects on fatigue capabilities. The fatigue life of different types of “defective” welds has been compared against a non-welded reference specimen.Design/methodology/approachThe results of the experimental campaign have been correlated with finite elements models.FindingsIt is concluded the geometry produced by the weld process, e.g. toe radius and under-bead shape, and the related stress raisers play a relevant role on fatigue capabilities of welds. This conclusion is valid only for a Ti-6Al-4V T-joint weld and only for flaw initiation. Knock down in materials properties has not been considered.Originality/valueThere is a lack of HCF fatigue data for welds of this geometry and material in the open literature. The paper is of relevance for industrial application and practical interest, although a lot more validation tests are required to draw a final conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.