Abstract

Active galactic nuclei (AGN) is one of the main drivers for transition from star-forming disk to passive spheroidal galaxies. However, the role of large-scale environment versus one-on-one interactions in triggering different types of AGN is still uncertain. We present a statistical study of the prevalence of the nuclear activity in isolated galaxies and physically bound isolated pairs. For the purpose of this study we considered optically and radio selected nuclear activity types. We aim to assess the effect of one-on-one interaction on the fraction of AGN and the role of their large-scale environment. To study the effect of one-on-one interaction on the fraction of AGN in isolated galaxy pairs, we compare with a sample of isolated galaxies homogeneously selected under the same isolation criterion. We examine the effect of the large-scale environment by comparing with control samples of single galaxies and galaxy pairs. In general we found no difference in the prevalence of optical AGN for the considered samples. For massive galaxies, the fraction of optical AGN in isolated galaxies is slightly higher than that in control samples. Also the fraction of passives in high mass isolated galaxies is smaller than in any other sample. Generally, there is no dependence on optical nuclear activity with local environment. On the other hand, we found evidence that radio AGN are strongly affected by the local environment. Optical AGN phenomenon is related to cold gas accretion, while radio AGN is related to hot gas accretion. In this context, there is more cold gas, fueling the central optical AGN, in isolated systems. Our results are in agreement with a scenario where cold gas accretion by secular evolution is the main driver of optical AGN, while hot gas accretion and one-on-one interactions are the main drivers of radio AGN activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.