Abstract

BackgroundCompression garments (CG) are commonly used by athletes to improve motor performance and recovery during or following exercise. Numerous studies have investigated the effect of CG on physiological and physical parameters with variable results as to their efficacy. A possible effect of commercially available CG may be to induce a change in leg mechanical characteristics during repetitive tasks to fatigue. This investigation determined the effect of CG on performance and vertical stiffness during single-leg-hopping to exhaustion.MethodsThirty-eight healthy, male participants, mean (SD) 22.1 (2.8) years of age performed single-leg hopping at 2.2 Hz to volitional exhaustion with a CG, without CG and with a sham. Differences in total duration of hopping (1-way repeated ANOVA) and dependant variables for the start and end periods (2-way repeated ANOVA) including duration of flight (tf), loading (tl) and contact (tc) phases, vertical height displacement during flight (zf) and loading (zl) phases, normalised peak vertical ground reaction force (FzN) and normalised vertical stiffness (kN), were determined. Bonferroni correction was performed to reduce the risk of type 1 error.ResultsThere was no significant difference (p = 0.73) in the total duration of hopping between conditions (CG (mean (SD)) 89.6 (36.3) s; without CG 88.5 (27.5) s; sham 91.3 (27.7) s). There were no significant differences between conditions for spatiotemporal or kinetic characteristics (p > 0.05). From the start to the end periods there was no significant difference in tl (p = 0.15), significant decrease in tf (p < 0.001), zf and zl (p < 0.001) and increase in tc (p < 0.001). There was also a significant increase in kN from start to end periods (p < 0.01) ranging from 9.6 to 14.2%.ConclusionsThis study demonstrates that commercially available CG did not induce a change in spatiotemporal or vertical stiffness during a fatiguing task. The finding that vertical stiffness increased towards the end of the task, while hopping frequency and duration of loading were maintained, may indicate that there was an alteration to the motor control strategy as fatigue approached.Trial registrationCurrent Controlled Trials ACTRN12615000240549. Registered 17 March 2015.

Highlights

  • Compression garments (CG) are commonly used by athletes to improve motor performance and recovery during or following exercise

  • There was no significant difference in the total duration of hopping between hopping with a CG (mean (SD)) 89.6 (36.3) s, without a CG 88.5 (27.5) s and the sham intervention 91.3 (27.7) s

  • There was no significant difference in kN between hopping conditions with a significant increase in kN from start to end periods (p < 0.01) ranging from a 9.6 to 14.2% (Table 1)

Read more

Summary

Introduction

Compression garments (CG) are commonly used by athletes to improve motor performance and recovery during or following exercise. A possible effect of commercially available CG may be to induce a change in leg mechanical characteristics during repetitive tasks to fatigue This investigation determined the effect of CG on performance and vertical stiffness during single-leg-hopping to exhaustion. The ability of CG to create a mechanical effect by compressing the thigh has been shown to affect both muscle oscillation and joint range of motion using either fitted or undersized compression garments [7]. These findings suggest that a change in motor performance could be induced due to changes in both the joints and muscles underlying the CG as suggested in a recent review [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.