Abstract

The evaluation of lattice stabilities of unstable elemental phases is a long-standing problem in the computational assessment of phase diagrams. Here we tackle this problem by explicitly calculating phase diagrams of intermetallic systems where its effect should be most conspicuous, binary systems of titanium with bcc transition metals. Two types of phase diagrams are constructed: one based on the lattice stabilities extracted from empirical data, and the other using the lattice stabilities computed from first principles. It is shown that the phase diagrams obtained using the empirical values contain clear contradictions with the experimental phase diagrams at the well known limits of low or high temperatures. Realistic phase diagrams, with a good agreement with the experimental observations, are achieved only when the computed lattice stability values are used. At intermediate temperatures, the computed phase diagrams resolve the controversy regarding the shape of the solvus in these systems, predicting a complex structure with a eutectoid transition and a miscibility gap between two bcc phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.