Abstract
The urge for carbon‐neutral green energy conversion and storage technologies has invoked the resurgence of interest in applying brucite‐type materials as low‐cost oxygen evolution reaction (OER) electrocatalysts in basic media. Transition metal layered hydroxides belonging to the brucite‐type structure family have been shown to display remarkable electrochemical activity. Recent studies on the earth‐abundant Fe3+ containing mössbauerite and Fe3+ rich Co−Fe layered oxyhydroxide carbonates have suggested that grafted interlayer anions might play a key role in OER catalysis. To probe the effect of such interlayer anion grafting in brucite‐like layered hydroxides, we report here a systematic study on the electrocatalytic performance of three distinct Ni and Co brucite‐type layered structures, namely, (i) brucite‐type M(OH)2 without any interlayer anions, (ii) LDHs with free interlayer anions, and (iii) hydroxynitrate salts with grafted interlayer anions. The electrochemical results indeed show that grafting has an evident impact on the electronic structure and the observed OER activity. Ni‐ and Co‐hydroxynitrate salts with grafted anions display notably earlier formations of the electrocatalytically active species. Particularly Co‐hydroxynitrate salts exhibit lower overpotentials at 10 mA cm−2 (η=0.34 V) and medium current densities of 100 mA cm−2 (η=0.40 V) compared to the corresponding brucite‐type hydroxides and LDH materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.