Abstract
We study anomalous kinetics associated with incomplete mixing for a bimolecular irreversible kinetic reaction where the underlying transport of reactants is governed by a fractional dispersion equation. As has been previously shown, we demonstrate that at late times incomplete mixing effects dominate and the decay of reactants follows a fundamentally different scaling comparing to the idealized well mixed case. We do so in a fully analytical manner using moment equations. In particular the novel aspect of this work is that we focus on the role that the initial correlation structure of the distribution of reactants plays on the late time scalings. We focus on short range and long (power law) range correlations and demonstrate how long range correlations can give rise to different late time scalings than one would expect purely from the underlying transport model. For the short range correlations the late time scalings deviate from the well mixed t−1 and scale like t−1/2α, where 1<α≤2 is the fractional dispersion exponent, in agreement with previous studies. For the long range correlation case it scales like t−β/2α, where 0<β<1 is the power law correlation exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.