Abstract

The fluidic precessing jet (FPJ) is a member of a family of self-excited oscillating jet flows that has found application in reducing oxides of nitrogen (NOx) from combustion systems in the high-temperature process industries. Its flow field is highly three-dimensional and unsteady, and many aspects of it remain unresolved. Velocity data, measured close to the exit plane, are presented for a variety of FPJ nozzles with three different inlet conditions, namely, a long pipe, a smooth contraction and an orifice. The results indicate that jet inlets that are known to have nonsymmetrically shedding initial boundary layers, namely those from the orifice or long pipe, cause jet precession to be induced more easily than the smooth contraction inlet, which is known to have a symmetrically shedding initial boundary layer. The nature of the exit flow is dominated by the degree to which a given configuration generates precession. Nevertheless, the three different inlet conditions also produce subtle differences in the exit profiles of mean velocity and turbulence intensity when the flow does precess reliably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.